Finding predictive gene groups from microarray data
نویسندگان
چکیده
منابع مشابه
Differential Evolution Algorithms for Finding Predictive Gene Subsets in Microarray Data
the selection of gene subsets that retain high predictive accuracy for certain cell-type classification, poses a central problem in microarray data analysis. The application and combination of various computational intelligence methods holds a great promise for automated feature selection and classification. In this paper, we present a new approach based on evolutionary algorithms that addresse...
متن کاملFinding Groups in Gene Expression Data
The vast potential of the genomic insight offered by microarray technologies has led to their widespread use since they were introduced a decade ago. Application areas include gene function discovery, disease diagnosis, and inferring regulatory networks. Microarray experiments enable large-scale, high-throughput investigations of gene activity and have thus provided the data analyst with a dist...
متن کاملFinding the Optimal Gene Order in Displaying Microarray Data
The rapid advances of genome-scale sequencing have brought out the necessity of developing new data processing techniques for enormous genomic data. Microarrays, for example, can generate such a large number of gene expression data that we usually analyze them with some clustering algorithms. However, the clustering algorithms have been ineffective for visualization in that they are not concern...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملPredictive Analysis of Microarray Data
Microarray gene expression data are analyzed by means of a Bayesian nonparametric model, with emphasis on prediction of future observables, yielding a method for selection of differentially expressed genes and the corresponding classifier.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2004
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2004.02.012